ABOUT ME

-

Total
-
  • Go/Java: 금칙어 검사 함수들 벤치마크 및 향상
    컴퓨터/Go language 2024. 5. 2. 00:28
    728x90
    반응형

    금지어 리스트를 .txt 에 저장하고 서버 메모리에 로딩했다. (10kb)

    금지어를 가장 빠르게 체크하는 방법은 무엇일까 궁금해서 벤치마크를 돌려보았다.

    기준: 10KB input string + 500개 금지어 리스트

     

    1. 정규 표현식 사용

    • 성능: 14,260K ns/op
    • 메모리 사용: 4321B/op
    • 할당 횟수: 24 allocs/op

    아래처럼 첫 로딩에 regex로 패턴을 모두 컴파일하고, 인풋 string을 확인했다.

    생각보다 대용량일 수록 굉장히 느리다.

    func CompileBadWordsPattern() error {
    	var pattern strings.Builder
    	pattern.WriteString(`(`)
    	for i, word := range badWordsList {
    		if word == "" {
    			continue
    		}
    		pattern.WriteString(regexp.QuoteMeta(word))
    		if i < len(badWordsList)-1 {
    			pattern.WriteString(`|`)
    		}
    	}
    	pattern.WriteString(`)`)
    
    	var err error
    	badWordRegex, err = regexp.Compile(pattern.String())
    	return err
    }

     

    2. 단순 문자열 검사 (strings.Contains)

    • 성능: 1066K ns/op
    • 메모리 사용: 322B/op
    • 할당 횟수: 2 allocs/op

    단순히 모든 금지어들 input에 있나 확인하는 방법이다.

    당연히 메모리 사용량과 할당 횟수가 적다.

    func CheckForBadWordsWithGo(input string) (bool, error) {
    	for _, word := range badWordsList {
    		if word == "" {
    			continue
    		}
    		if strings.Contains(input, word) {
    			return true, nil
    		}
    	}
    	return false, nil
    }

     

    3. 병렬 처리 문자열 검사 (goroutines)

    • 성능: 194,213K ns/op
    • 메모리 사용: 51,573B/op
    • 할당 횟수: 1072 allocs/op

    strings.Contains이지만 각 금지어마다 goroutine을 불러서 (스레드 개념) 병렬로 처리해 보았다.

    메모리 사용량이 가장 많다. (각각 고루틴이 독립적인 스택 메모리를 사용하기 때문)

    func CheckForBadWordsWithGoRoutine(input string) (bool, error) {
    	ctx, cancel := context.WithCancel(context.Background())
    	defer cancel()
    
    	resultChan := make(chan bool)
    	var wg sync.WaitGroup
    
    	for _, word := range badWordsList {
    		wg.Add(1)
    		go func(w string) {
    			defer wg.Done()
    			select {
    			case <-ctx.Done():
    				return // Early exit on context cancellation.
    			default:
    				if w == "" {
    					return // Skip empty words.
    				}
    				if strings.Contains(input, w) {
    					resultChan <- true
    					cancel() // Found a bad word, signal to cancel other goroutines.
    				}
    			}
    		}(word)
    	}
    
    	go func() {
    		wg.Wait()
    		close(resultChan)
    	}()
    
    	for result := range resultChan {
    		if result {
    			return true, nil
    		}
    	}
    
    	return false, nil
    }

     

    위 3가지에 대한 그래프는 다음과 같다.

    성능: 병렬 처리 방식 >> 단순 문자열 검색 > 정규 표현식

     

    병렬 처리가 속도는 좋지만 메모리를 많이 잡아먹는다.

    그렇다고 단순 문자열 검사 방식을 쓰자니, 메모리도 적게 잡고 속도가 더 빠른 방법을 찾고 싶었다.

     

    4. 아호코라식

    다중 문자열 검색 알고리즘이다. (@1975년 논문 링크)

    한 번의 스캔으로 입력 문자열에서 여러 패턴을 동시에 찾게 해 줄 수 있다. (문자열 검색, 네트워크 패킷 분석 등....)

    이 알고리즘은 Trie를 필요로 하고, 실패 링크를 설정해야 한다.

    (모든 패턴 포함 -> Trie, 각 노드 매칭 실패 시 이동할 노드 (KMP의 부분 일치 테이블처럼) -> Failure Links)

     

    단순하게 구현할 순 있겠지만

    type node struct {
        children map[rune]*node
        output   []string
        failure  *node
    }
    
    func (n *node) search(text string) []string {
        current := n
        results := []string{}
        for _, r := range text {
            for current != nil && current.children[r] == nil {
                current = current.failure
            }
            if current == nil {
                current = n
                continue
            }
            current = current.children[r]
            results = append(results, current.output...)
        }
        return results
    }

     

    잘 구현된 라이브러리를 이용해 보고자 한다. https://pkg.go.dev/github.com/rrethy/ahocorasick

    찾아보니 이중 Trie 나 LinkedList Trie 같은 자료구조로도 만들기도 하는 듯하다.

     

    DAT

    Double-Array Trie는 쉽게 들을 수 있는 자료구조는 아닌 것 같다.

    간단히 정리하면, 기본 Trie는 각 노드가 자식 노드에 대한 포인터를 갖고 있어야 하고,

    각 노드는 해당하는 문자를  저장하는 공간이 필요하게 된다. (즉, 공간 효율성이 떨어짐)

    DAT는 2개의 배열 (Base + Check)을 사용해서 해결한다. (불필요 노드 생성 방지)

    • Base 배열: 현재 노드에서 특정 자식 노드로 가기 위한 기준 값 저장
    • Check 배열: 실제로 해당 인덱스가 유효한 자식인지를 확인하는 용도
    // LoadBadWordsForTrie loads bad words from a file into a trie (Aho-Corasick)
    func LoadBadWordsForTrie(filePath string) error {
    	file, err := os.Open(filePath)
    	if err != nil {
    		return err
    	}
    	defer file.Close()
    
    	const estimatedWords = 1000
    	badWordsList = make([]string, 0, estimatedWords)
    
    	scanner := bufio.NewScanner(file)
    	const maxCapacity = 10 * 1024 // 10KB;
    	buf := make([]byte, maxCapacity)
    	scanner.Buffer(buf, maxCapacity)
    
    	for scanner.Scan() {
    		word := scanner.Text()
    		badWordsList = append(badWordsList, word)
    	}
    
    	if err := scanner.Err(); err != nil {
    		return err
    	}
    
    	badWordsList = append([]string{}, badWordsList...)
    
    	// Compile the list of bad words into a trie
    	matcher = ahocorasick.CompileStrings(badWordsList)
    
    	return nil
    }
    
    // CheckForBadWordsUsingTrie checks if the input contains any bad words using Aho-Corasick trie
    func CheckForBadWordsUsingTrie(input string) (bool, error) {
    	if matcher == nil {
    		return false, os.ErrNotExist
    	}
    	matches := matcher.FindAllString(input)
    	return len(matches) > 0, nil
    }

     

    성능: DAT AC > 단순 문자열 검사 >> 멀티쓰레드 > regex

     

    이전에 공부한 HyperLogLog 도 떠오르고 (or Bloom), Radix Trie 도 떠올랐다.

    Adaptive Radix Tree라는.. 처음 보는 버전도 있고 빨라 보이지만, 부분 문자열 검색 하면서 성능을 살리긴 힘들다.

     

    GitHub - plar/go-adaptive-radix-tree: Adaptive Radix Trees implemented in Go

    Adaptive Radix Trees implemented in Go. Contribute to plar/go-adaptive-radix-tree development by creating an account on GitHub.

    github.com

     

    결과

    benchtime을 다 같게 하고, 2번씩 실행한 결과다. (싱글코어/12 코어)

    아호코라식 + Double-Array Trie가 메모리는 단순 strings.Contains 보다 조금 더 들겠지만,

    제일 빠르다.

    $ go test -benchmem -run=^$ -bench '^(BenchmarkCheckForBadWords|BenchmarkContainsWithStrings|BenchmarkContainsWithStringsConcurent|BenchmarkContainsWithAhocorasick|BenchmarkContainsWithART)$' -benchtime 1000x -count 2 -cpu 1,12 chulbong-kr/util
    
    goos: windows
    goarch: amd64
    pkg: chulbong-kr/util
    cpu: Intel(R) Core(TM) i5-10600KF CPU @ 4.10GHz
    BenchmarkCheckForBadWords                           1000          14371041 ns/op             430 B/op          2 allocs/op
    BenchmarkCheckForBadWords                           1000          13955455 ns/op             329 B/op          2 allocs/op
    BenchmarkCheckForBadWords-12                        1000          14697486 ns/op             432 B/op          2 allocs/op
    BenchmarkCheckForBadWords-12                        1000          13903426 ns/op             432 B/op          2 allocs/op
    BenchmarkContainsWithStrings                        1000           1047962 ns/op             329 B/op          2 allocs/op
    BenchmarkContainsWithStrings                        1000           1033943 ns/op             329 B/op          2 allocs/op
    BenchmarkContainsWithStrings-12                     1000           1039089 ns/op             329 B/op          2 allocs/op
    BenchmarkContainsWithStrings-12                     1000           1064674 ns/op             329 B/op          2 allocs/op
    BenchmarkContainsWithStringsConcurent               1000           1597747 ns/op           51947 B/op       1074 allocs/op
    BenchmarkContainsWithStringsConcurent               1000           1592933 ns/op           51825 B/op       1074 allocs/op
    BenchmarkContainsWithStringsConcurent-12            1000            189257 ns/op           52017 B/op       1074 allocs/op
    BenchmarkContainsWithStringsConcurent-12            1000            189307 ns/op           51835 B/op       1074 allocs/op
    BenchmarkContainsWithAhocorasick                    1000             45143 ns/op            9706 B/op          6 allocs/op
    BenchmarkContainsWithAhocorasick                    1000             47199 ns/op            9706 B/op          6 allocs/op
    BenchmarkContainsWithAhocorasick-12                 1000             47213 ns/op            9707 B/op          6 allocs/op
    BenchmarkContainsWithAhocorasick-12                 1000             46609 ns/op            9706 B/op          6 allocs/op
    PASS
    ok      chulbong-kr/util        65.032s

     

    15,000개 금칙어 + 10kb input

    goos: windows
    goarch: amd64
    pkg: chulbong-kr/util
    cpu: Intel(R) Core(TM) i5-10600KF CPU @ 4.10GHz
    BenchmarkCheckForBadWords-12                  10        4858743430 ns/op         1602979 B/op       7288 allocs/op
    BenchmarkContainsWithStrings-12               10           3563700 ns/op          702328 B/op       5262 allocs/op
    BenchmarkContainsWithAhocorasick-12           10           1108570 ns/op          398483 B/op       3580 allocs/op
    PASS
    ok      chulbong-kr/util        49.101s

     

    Java

    Spring Boot 3에서 Double-Array Trie는 다음 라이브러리가 괜찮은 것 같다.

     

    GitHub - hankcs/AhoCorasickDoubleArrayTrie: An extremely fast implementation of Aho Corasick algorithm based on Double Array Tri

    An extremely fast implementation of Aho Corasick algorithm based on Double Array Trie. - hankcs/AhoCorasickDoubleArrayTrie

    github.com

     

    단어 로딩

    이 Trie는 build 후 thread-safe 하다.

    @PostConstruct
    public void init() throws IOException {
        trie = new AhoCorasickDoubleArrayTrie<>();
        TreeMap<String, String> badWordsMap = new TreeMap<>();
    
        try (BufferedReader reader = new BufferedReader(new InputStreamReader(
                Objects.requireNonNull(getClass().getResourceAsStream("/badwords.txt")), StandardCharsets.UTF_8))) {
            badWords = reader.lines()
                    .filter(word -> !word.isEmpty())
                    .distinct().toList();
            for (String word : badWords) {
                badWordsMap.put(word, word);
            }
        }
    
        trie.build(badWordsMap); // thread-safe after
    }

     

    벤치마크

     

    1. DAT 버전

    /*
    20240516 (DAT)
    
    Average input text length: 1368812.2
    Average duration: 225100.0 ns (0.2251 ms, 2.251E-4 s)
     */
    @Test
    void benchmarkContainsProfanity() {
        int iterations = 10;
        long totalDurationNs = 0;
        int totalLength = 0;
    
        for (int i = 0; i < iterations; i++) {
            int randomLength = new Random().nextInt(1_000_000) + 1_000_000; // Random length between 1,000,000 and 2,000,000
            String largeText = generateLargeRandomKoreanText(randomLength); // Generate random length text
            totalLength += randomLength;
    
            long startTime = System.nanoTime();
            boolean containsProfanity = profanityService.containsProfanity(largeText);
            long endTime = System.nanoTime();
    
            long durationNs = endTime - startTime; // Duration in nanoseconds
            totalDurationNs += durationNs; // Accumulate total duration
    
            double durationMs = durationNs / 1_000_000.0; // Convert to milliseconds
            double durationS = durationNs / 1_000_000_000.0; // Convert to seconds
    
            System.out.println("Run " + (i + 1) + ": " + randomLength + " texts - Profanity check duration: " + durationNs + " ns (" + durationMs + " ms, " + durationS + " s)");
            assertTrue(containsProfanity, "Profanity check failed on large Korean text");
        }
    
        double averageDurationNs = totalDurationNs / (double) iterations;
        double averageDurationMs = averageDurationNs / 1_000_000.0;
        double averageDurationS = averageDurationNs / 1_000_000_000.0;
        double averageLength = totalLength / (double) iterations;
    
        System.out.println("Average input text length: " + averageLength);
        System.out.println("Average duration: " + averageDurationNs + " ns (" + averageDurationMs + " ms, " + averageDurationS + " s)");
    
        // Assert that the average duration is less than 10 milliseconds (10,000,000 nanoseconds)
        assertTrue(averageDurationNs < 10_000_000, "Average profanity check should be faster than 10ms");
    }

     

    2. String.contains 버전

    /*
    20240516 (String.contains)
    
    Average input text length: 1592083.3
    Average duration: 5.794606E7 ns (57.94606 ms, 0.05794606 s)
     */
    @Test
    void benchmarkStringContains() {
        int iterations = 10;
        long totalDurationNs = 0;
        int totalLength = 0;
        List<String> badWords = profanityService.getBadWords();
    
        for (int i = 0; i < iterations; i++) {
            int randomLength = new Random().nextInt(1_000_000) + 1_000_000; // Random length between 1,000,000 and 2,000,000
            String largeText = generateLargeRandomKoreanText(randomLength); // Generate random length text
            totalLength += randomLength;
    
            long startTime = System.nanoTime();
            boolean containsProfanity = false;
            for (String badWord : badWords) {
                if (largeText.contains(badWord)) {
                    containsProfanity = true;
                    break;
                }
            }
            long endTime = System.nanoTime();
    
            long durationNs = endTime - startTime; // Duration in nanoseconds
            totalDurationNs += durationNs; // Accumulate total duration
    
            double durationMs = durationNs / 1_000_000.0; // Convert to milliseconds
            double durationS = durationNs / 1_000_000_000.0; // Convert to seconds
    
            System.out.println("Run " + (i + 1) + ": " + randomLength + " texts - String.contains check duration: " + durationNs + " ns (" + durationMs + " ms, " + durationS + " s)");
            assertTrue(containsProfanity, "String.contains check failed on large Korean text");
        }
    
        double averageDurationNs = totalDurationNs / (double) iterations;
        double averageDurationMs = averageDurationNs / 1_000_000.0;
        double averageDurationS = averageDurationNs / 1_000_000_000.0;
        double averageLength = totalLength / (double) iterations;
    
        System.out.println("Average input text length: " + averageLength);
        System.out.println("Average duration: " + averageDurationNs + " ns (" + averageDurationMs + " ms, " + averageDurationS + " s)");
    
        // Assert that the average duration is less than 100 milliseconds
        assertTrue(averageDurationMs < 100, "Average String.contains check should be faster than 100ms");
    }

     

    결과

    contains으로는 비교도 안될 정도로 빠르다.

    속도 비교 ms 단위, 낮을 수록 좋음
    랜덤 텍스트 테스트 길이 평균

     

    벤치마크 jmh

    plugins {
        id 'java'
        ...
        id "me.champeau.jmh" version "0.7.2"
    }
    
        // https://mvnrepository.com/artifact/org.openjdk.jmh/jmh-core
        implementation 'org.openjdk.jmh:jmh-core:1.37'
        annotationProcessor 'org.openjdk.jmh:jmh-generator-annprocess:1.37'
    
    dependencies {
        jmh 'org.openjdk.jmh:jmh-core:1.37'
        jmh 'org.openjdk.jmh:jmh-generator-annprocess:1.37'
        jmhAnnotationProcessor  'org.openjdk.jmh:jmh-generator-annprocess:1.37'
    
    }
    import org.openjdk.jmh.annotations.*;
    import org.openjdk.jmh.infra.Blackhole;
    import org.springframework.beans.factory.annotation.Autowired;
    import org.springframework.boot.SpringApplication;
    import org.springframework.boot.test.context.SpringBootTest;
    import org.springframework.context.ConfigurableApplicationContext;
    import org.springframework.context.annotation.AnnotationConfigApplicationContext;
    
    import java.util.List;
    import java.util.Random;
    import java.util.concurrent.TimeUnit;
    
    @SpringBootTest(classes = Application.class)
    @State(Scope.Benchmark)
    public class ProfanityServiceBenchmark2Test {
    
        @Autowired
        private ProfanityService profanityService;
    
        private ConfigurableApplicationContext context;
    
        @Setup(Level.Trial)
        public void setUp() throws Exception {
            context = SpringApplication.run(Application.class);
            profanityService = context.getBean(ProfanityService.class);
            profanityService.init();
        }
    
        @TearDown(Level.Trial)
        public void tearDown() throws Exception {
            context.close();
        }
    
        @Benchmark
        @BenchmarkMode(Mode.AverageTime)
        @OutputTimeUnit(TimeUnit.NANOSECONDS)
        @Warmup(iterations = 2, time = 3, timeUnit = TimeUnit.SECONDS)
        @Measurement(iterations = 10, time = 5, timeUnit = TimeUnit.SECONDS)
        public void benchmarkContainsProfanity(Blackhole blackhole) {
            int randomLength = new Random().nextInt(1_000_000) + 1_000_000; // Random length between 1,000,000 and 2,000,000
            String largeText = generateLargeRandomKoreanText(randomLength); // Generate random length text
    
            long startTime = System.nanoTime();
            boolean containsProfanity = profanityService.containsProfanity(largeText);
            long endTime = System.nanoTime();
    
            blackhole.consume(containsProfanity);
            blackhole.consume(endTime - startTime);
        }
    
        @Benchmark
        @BenchmarkMode(Mode.AverageTime)
        @OutputTimeUnit(TimeUnit.NANOSECONDS)
        @Warmup(iterations = 2, time = 3, timeUnit = TimeUnit.SECONDS)
        @Measurement(iterations = 10, time = 5, timeUnit = TimeUnit.SECONDS)
        public void benchmarkStringContains(Blackhole blackhole) {
            List<String> badWords = profanityService.getBadWords();
            int randomLength = new Random().nextInt(1_000_000) + 1_000_000; // Random length between 1,000,000 and 2,000,000
            String largeText = generateLargeRandomKoreanText(randomLength); // Generate random length text
    
            long startTime = System.nanoTime();
            boolean containsProfanity = false;
            for (String badWord : badWords) {
                if (largeText.contains(badWord)) {
                    containsProfanity = true;
                    break;
                }
            }
            long endTime = System.nanoTime();
    
            blackhole.consume(containsProfanity);
            blackhole.consume(endTime - startTime);
        }
    
        private String generateLargeRandomKoreanText(int length) {
            Random random = new Random();
            StringBuilder sb = new StringBuilder(length);
    
            String badWord = "시발"; // Korean bad word for testing
            int insertPosition = random.nextInt(length - badWord.length());
    
            for (int i = 0; i < length; i++) {
                if (i == insertPosition) {
                    sb.append(badWord);
                    i += badWord.length() - 1;
                } else {
                    char c = (char) (random.nextInt(0xD7A3 - 0xAC00 + 1) + 0xAC00); // Random Korean character
                    sb.append(c);
                }
            }
    
            return sb.toString();
        }
    
        public static void main(String[] args) throws Exception {
            org.openjdk.jmh.Main.main(args);
        }
    }

     

    DAT 가 약 3.39배 정도 빠른 것을 볼 수 있었다. (45.58 ms / 13.44 ms)

    Benchmark                                                  Mode  Cnt         Score         Error  Units
    ProfanityServiceBenchmark2Test.benchmarkContainsProfanity  avgt   50  13436583.455 ±  232337.249  ns/op
    ProfanityServiceBenchmark2Test.benchmarkStringContains     avgt   50  45580378.901 ± 1271098.363  ns/op
    728x90

    댓글